ДВОИЧНЫЙ КОД

670.- Двоичный код.

Двои́чный код — это способ представления данных в виде кода, в котором каждый разряд принимает одно из двух возможных значений, обычно обозначаемых цифрами 0 и 1. Разряд в этом случае называется двоичным разрядом.

В случае обозначения цифрами «0» и «1», возможные состояния двоичного разряда наделяются качественным соотношением «1» > «0» и количественными значениями чисел «0» и «1».

Двоичный код может быть непозиционным и позиционным. Позиционный двоичный код лежит в основе двоичной системы счисления, широко распространенной в современной цифровой технике.

Примеры двоичных чисел

В таблице показаны первые 16 двоичных чисел и их соответствие десятичным и шестнадцатиричным числам.

Десятичное числоШестнадцатеричное числоДвоичное число
000000
110001
220010
330011
440100
550101
660110
770111
881000
991001
10A1010
11B1011
12C1100
13D1101
14E1110
15F1111

Примеры «доисторического» использования кодов

  • Инки имели свою счётную систему кипу, известную с III тысячелетия до н. э, которая физически представляла собой верёвочные сплетения и узелки. В 2006 году американский исследователь Гэри Уртон[en] обнаружил, что в узелках заложен некий код, более всего похожий на двоичную систему счисления[1]. Их код допускает 27=128 вариаций.

Двоичный код (бинарный код) — система записи информации с помощью двух символов — 0 и 1. Он является основой цифровых вычислений, так как компьютеры используют внутреннюю архитектуру и операции, основанные на двоичной системе. Это обеспечивает возможность представления и обработки информации в виде электрических импульсов, с которыми работает современная вычислительная техника. Понимание двоичного кода необходимо для программирования, сетевых технологий и других областей, связанных с цифровой информацией.

Что такое двоичный код

Когда мы говорим о двоичном коде, мы должны сначала разобраться в понятии «бит». Бит (сокращение от binary digit) представляет собой самую маленькую единицу информации. Он может принимать значение либо 0, либо 1. Используя комбинацию битов, можно представлять различные виды информации: числа, символы (буквы, знаки препинания, спецсимволы и т. д.), изображения, звуки и т. д. 

Принцип работы современных компьютеров также имеет двоичную природу. Носителем информации в них является электрический заряд или импульс. Например, оперативная память содержит в себе множество ячеек, в которых этот заряд может либо отсутствовать, либо присутствовать, что соответствует 0 и 1. Комбинации таких ячеек с отсутствием или присутствием электрического заряда и являются физическим кодированием информации. Аналогично данные сохраняются на SSD, flash-картах. А вот на магнитных жестких дисках роль мельчайшего физического носителя информации играет ячейка из ферромагнетика, которая также принимает одно из двух состояний — намагниченное или ненамагниченное. Считывая информацию с жесткого диска специальной головкой, компьютер переводит это состояние в соответствующий электрический сигнал.

Иными словами, непосредственно в электронных вычислительных устройствах кодирование информации осуществляется с помощью бинарных пар состояний различных физических сущностей (электрического заряда или импульса, намагничивания и т. д.). А цифровой бинарный код — те самые 0 и 1 — это абстрактная двоичная запись таких состояний.

История двоичного кода

Идея двоичного представления информации появилась в глубокой древности. Одним из первых исторических систем двоичного кода был древний китайский принцип инь-ян. В нем использовались различные комбинации линий, чтобы представить двоичные числа. Эта система применялась в китайской космологии и философии, а также созданных на их основе магических, астрологических и гадательных практиках и не была связана непосредственно с вычислениями. 

Применительно к математике и вычислениям идея использования двоичного кода была представлена в 1679 году германским математиком и философом Готфридом Лейбницем. Он предложил применять ее для представления чисел и логических операций. Это стало отправной точкой для развития двоичной арифметики и логики, которые сегодня лежат в основе работы компьютеров. Но в силу технических ограничений того времени реализовать вычислительные устройства, работающие по такому принципу, было невозможно.

Настоящий прорыв в истории двоичного кода произошел в начале и особенно середине XX века. Это связано с развитием электронных компьютеров и появлением электронных элементов, способных оперировать сигналами в двоичном формате. В 1947 году был создан первый транзистор, который стал основой для разработки электронных компонентов, способных работать с двоичным кодом. В этот период математики Джон Тьюки, Алан Тьюринг и Клод Шеннон были ключевыми фигурами в разработке теории двоичного кода для обработки информации. В частности, Тьюки впервые предложил термин bit, а Шеннон популяризировал его в своей фундаментальной статье «Математическая теория связи».

Ссылки:

МЫ В СОЦСЕТЯХ