ТЁМНАЯ ЭНЕРГИЯ

014.- ГЛАВНАЯ

Тёмная эне́ргия (англ. dark energy) в космологии — гипотетический вид энергии, введённый в математическую модель Вселенной для объяснения наблюдаемого её расширения с ускорением.

Существует три варианта объяснения сущности тёмной энергии:

По состоянию на 2020 год надёжные наблюдательные данные, такие как измерения реликтового излучения, подтверждают существование тёмной энергии, Модель Лямбда-CDM принимается в космологии как стандартная.

Окончательный выбор между вариантами требует очень длительных и высокоточных измерений скорости расширения Вселенной, чтобы понять, как эта скорость изменяется со временем. Темпы расширения Вселенной описываются космологическим уравнением состояния. Разрешение уравнения состояния для тёмной энергии является одной из самых насущных задач современной наблюдательной космологии.

Согласно опубликованным в марте 2013 года данным наблюдений космической обсерватории «Планк», общая масса-энергия наблюдаемой Вселенной состоит из тёмной энергии на 68,3 % и тёмной материи на 26,8 %.

На основании проведённых в конце 1990-х годов наблюдений сверхновых звёзд типа Ia был сделан вывод, что расширение Вселенной ускоряется со временем. Затем эти наблюдения были подкреплены другими источниками: измерениями реликтового излучениягравитационного линзированиянуклеосинтеза Большого Взрыва. Все полученные данные хорошо вписываются в лямбда-CDM модель.

Расстояния до других галактик определяются измерением их красного смещения. По закону Хаббла, величина красного смещения света удалённых галактик прямо пропорциональна расстоянию до этих галактик. Соотношение между расстоянием и величиной красного смещения называется параметром Хаббла (или, не совсем точно, постоянной Хаббла).

Однако само значение параметра Хаббла требуется сначала каким-нибудь способом установить, а для этого нужно измерить значения красного смещения для галактик, расстояния до которых уже вычислены другими методами. Для этого в астрономии применяются «стандартные свечи», то есть объекты, светимость которых известна. Лучшим типом «стандартной свечи» для космологических наблюдений являются сверхновые звёзды типа Ia (все вспыхивающие Ia, находящиеся на одинаковом расстоянии, должны иметь почти одинаковую наблюдаемую яркость; при этом желательно делать поправки на вращение и состав исходной звезды). Сравнивая наблюдаемую яркость сверхновых в разных галактиках, можно определить расстояния до этих галактик.

В конце 1990-х годов было обнаружено, что в удалённых галактиках, расстояние до которых было определено по закону Хаббла, сверхновые типа Ia имеют яркость ниже той, которая им полагается. Иными словами, расстояние до этих галактик, вычисленное по методу «стандартных свеч» (сверхновых Ia), оказывается больше расстояния, вычисленного на основании ранее установленного значения параметра Хаббла. Был сделан вывод, что Вселенная не просто расширяется, она расширяется с ускорением…

Темная энергия — гораздо более странная субстанция, чем темная материя. Начать с того, что она не собирается в сгустки, а равномерно «разлита» во Вселенной. В галактиках и скоплениях галактик её столько же, сколько вне их. Самое необычное то, что темная энергия в определенном смысле испытывает антигравитацию. Мы уже говорили, что современными астрономическими методами можно не только измерить нынешний темп расширения Вселенной, но и определить, как он изменялся со временем. Так вот, астрономические наблюдения6 свидетельствуют о том, что сегодня (и в недалеком прошлом) Вселенная расширяется с ускорением: темп расширения растет со временем. В этом смысле и можно говорить об антигравитации: обычное гравитационное притяжение замедляло бы разбегание галактик, а в нашей Вселенной, получается, всё наоборот.

Такая картина, вообще говоря, не противоречит общей теории относительности, однако для этого темная энергия должна обладать специальным свойством — отрицательным давлением. Это резко отличает её от обычных форм материи. Не будет преувеличением сказать, что природа темной энергии — это главная загадка фундаментальной физики XXI века.

Один из кандидатов на роль темной энергии — вакуум. Плотность энергиии вакуума не изменяется при расширении Вселенной, а это и означает отрицательное давление вакуума7. Другой кандидат — новое сверхслабое поле, пронизывающее всю Вселенную; для него употребляют термин «квинтэссенция». Есть и другие кандидаты, но в любом случае темная энергия представляет собой что-то совершенно необычное.

Другой путь объяснения ускоренного расширения Вселенной состоит в том, чтобы предположить, что сами законы гравитации видоизменяются на космологических расстояниях и космологических временах. Такая гипотеза далеко не безобидна: попытки обобщения общей теории относительности в этом направлении сталкиваются с серьезными трудностями.

По-видимому, если такое обобщение вообще возможно, то оно будет связано с представлением о существовании дополнительных размерностей пространства, помимо тех трех измерений, которые мы воспринимаем в повседневном опыте.

К сожалению, сейчас не видно путей прямого экспериментального исследования темной энергии в земных условиях. Это, конечно, не означает, что в будущем не может появиться новых блестящих идей в этом направлении, но сегодня надежды на прояснение природы темной энергии (или, более широко, причины ускоренного расширения Вселенной) связаны исключительно с астрономическими наблюдениями и с получением новых, более точных космологических данных. Нам предстоит узнать в деталях, как именно расширялась Вселенная на относительно позднем этапе её эволюции, и это, надо надеяться, позволит сделать выбор между различными гипотезами.


6 Речь идет о наблюдениях сверхновых типа 1а.

7 Изменение энергии при изменении объема определяется давлением, ΔЕ = —pΔV. При расширении Вселенной энергия вакуума растет вместе с объемом (плотность энергии постоянна), что возможно, только если давление вакуума отрицательно. Отметим, что противоположные знаки давления и энергии вакуума прямо следуют из Лоренц-инвариантности.

Ссылки:

МЫ В СОЦСЕТЯХ